

Structural Design

HM

Fabian Scheurer

STUDIO GREG LYNN / UNIVERSITY OF APPLIED ARTS VIENNA

Bence Pap

We Have A Problem

GHG Emissions

Source: Architecture 2030, from UN Environment Global Status Report 2017

Construction Waste

Productivity

Source: Office for National Statistics, UK, 2018

Modular Hasn't Worked

Prefabrication for Speed and Quality

We Need a Rethink

Design Process

• Involve the Supply Chain:

- Recognise and use industrialised trade solutions (e.g. façade, MEP, Steelwork)
- Broad distribution of suppliers builds resilience and allows scalability, locally and globally.

• Flexible Design Solutions:

- Industrialisation must not mean going back to the concepts of the 1970s. Standardization of design is no longer required.
- Industrialized construction must be adaptable to different (all!) typologies and boundary conditions.

• Designing for an Industrialized Process:

- o Fully resolved design, including all component details, assembly and interfaces
- Designed for future repair, maintenance and adaptability

Risks

Risks we can control

- Suitability of the design solution
- Coordination
- Physical interfaces
- How things go together
- Logistics and Delivery

Risks we cannot control

- Weather
- Ground
- Market
- Economy
- Diseases

The Current Approach

- Design Team -> Design Intent
- Trade Packages -> Resolving Design Detail
- Interfaces between packages not fully resolved.
- Interfaces between packages not owned by anyone, and depending on procurement
- -> Delays, Errors, Rework, Additional Costs and Quality Defects

Controllable risks are packaged and passed on—and remain unresolved.

Resolve Design Risks before Tender

- Trade Contractor Input to be brought into the design before tender
- Definition of the Components and Resolution of the Interfaces

Preparation of the assembly details before going from Design into Construction

Resolve Design Risks before Tender Construction

- Trade Contractor Input to be brought into the design before tender construction
- Definition of the Components and Resolution of the Interfaces

Preparation of the assembly details before going from Design into Construction

Resolve Design Risks before Tender Construction

- Trade Contractor Input to be brought into the design before tender construction
- Definition of the Components and Resolution of the Interfaces

Preparation of the assembly details before going from Design into Construction

Redefining the Value Beyond Tender Price

Focus on Interfaces

Spatial Coordination between Disciplines and Trades

- Clash detection and clash avoidance are *not sufficient*.
- Spatial requirements for the installation of subassemblies and ease of construction.
- Space for *access during and for installation* will need to be built into the design.

Development of Customizable Standardized Physical Interfaces

- Establish *clear ownership* of interface between packages.
- Interface solutions will have to be generated with and accepted by the trades.
- Their development and adoption will happen *over time* and lead to a *continued improvement* of the process
- This requires moving from trade thinking to *component thinking* with the aim of resolving the physical assembly and connection of the components.
- Government, relevant institutions and academia will have to drive this and contribute.

Considering the Lifespan of Components

Lifespan (Years)	Building Element
60+	Frame Openings in the Frame Party Walls
30	Partition Walls Lifts Façade MEP Installation
10	Kitchens Bathrooms

A Platform Approach

Industrialising Construction

- Kit of Parts
- Utilising Industrialised Manufacturing
- Supplier Agnostic
- Addressing and De-risking interfaces
- Construction stage focus

A Platform Focused Approach

Traditional

- Each Building Bespoke
- Designed from Scratch
- Site focused works
- Interfaces resolved late on

Platform

- Common Building System
- Assembled from kit of parts
- Off site focused
- Interfaces resolved at start

Platform Process Overview

Platform Process Overview

Subassembly Zones and Specifications

Componentized Prefabrication and Assembly

Digital Construction Platform

Digital Construction Platform

Verification and Validation – Subassemblies

Example: Internal Walls

Verification and Validation – Whole Building

Digital Platform Tools

Sub Assembly Configuration and Design

Zones and Performance Spec

Verification and Validation

Programme

Programme

Day 1, 18 April 2024

14:30 - 17:30 Introduction and Keynotes

18:00 - 21:00 Food, Drinks and Networking

Day 2, 19 April 2024

9:00 - 11:00 Panel 1: Designing for Industrialised Construction

11:00 - 11:15 Refreshments

11:15 - 13:15 Panel 2: The Role of Technology

13:15 - 14:00 Lunch

14:00 - 16:00 Panel 3: Architectural Quality

16:00 - 16:15 Closing Remarks

Our Keynote Speakers

Chris KaufieldVice President of SaaS Growth, Stoke Space, SeattleFabian ScheurerProfessor for Digital Construction Technology and Fabrication, München
Partner at Design-to-Production, Zürich

Our Panellists

Al Fisher **Christian Kaufmann** Daniel Wright David Flynn **Erlend Spets** Friedrich Ludewig Jonathan Roynon Mareike Lamm Maria Mateo Navarro Matthew Holloway Melike Altinisik *Roland Sitzberger* Viviana Muscettola Wolfgang Rieder

Head of Design Technology, Buro Happold Managing Director, Kaufmann Bausysteme Associate Partner, RSHP, London Co-founder and COO, Kope, London Associate Partner, McKinsey, Oslo Founding Director, Acme, London Lead, Industrial Construction, Buro Happold Partner, Sauerbruch Hutton Head of Creative Design, ECE, Hamburg Principal, Grimshaw Founder, Melike Altinisik Architects Partner, Porsche Consulting Director, Zaha Hadid Architects, London CEO, Rieder Gruppe

Three Panel Discussions

Panel Discussion 1: Designing for Industrialised Construction

Roland Sitzberger, Jonathan Roynon, Viviana Muscettola, Erlend Spets, Christian Kaufmann Chair: Wolf Mangelsdorf

Panel Discussion 2: The Role of Technology

Al Fisher, David Flynn, Wolfgang Rieder, Matthew Holloway Chair: Fabian Scheurer

Panel Discussion 3: Architectural Quality

Maria Mateo Navarro, Daniel Wright, Friedrich Ludewig, Mareike Lamm, Melike Altinisik Chair: Bence Pap

Structural Design

Architecture Applied Arts Vienna

> Florian Medicus Eylül Icgören

Baerbel Mueller

Andrei Gheorghe

Claudia Rüssli

GREG / UNIVERSITY OF APPLIED ARTS VIENNA

Greg Lynn Astrid Trinkbauer

BURO HAPPOLD

Matt Samuel Greg Palmer

Bauwelt

Boris Schade-Bünsow Jan Friedrich

We must close the Fabrication Gap